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Abstract

Background

Dengue fever is the most common arboviral disease in humans, with an estimated 50-100

million annual infections worldwide. Dengue fever cases have increased substantially in the

past four decades, driven largely by anthropogenic factors including climate change. More

than half the population of Peru is at risk of dengue infection and due to its geography, Peru

is also particularly sensitive to the effects of El Niño Southern Oscillation (ENSO). Determin-

ing the effect of ENSO on the risk for dengue outbreaks is of particular public health rele-

vance and may also be applicable to other Aedes-vectored viruses.

Methods

We conducted a time-series analysis at the level of the district-month, using surveillance

data collected from January 2000 to September 2018 from all districts with a mean elevation

suitable to survival of the mosquito vector (<2,500m), and ENSO and weather data from

publicly-available datasets maintained by national and international agencies. We took a

Bayesian hierarchical modeling approach to address correlation in space, and B-splines

with four knots per year to address correlation in time. We furthermore conducted subgroup

analyses by season and natural region.

Results

We detected a positive and significant effect of temperature (˚C, RR 1.14, 95% CI 1.13,

1.15, adjusted for precipitation) and ENSO (ICEN index: RR 1.17, 95% CI 1.15, 1.20; ONI

index: RR 1.04, 95% CI 1.02, 1.07) on outbreak risk, but no evidence of a strong effect for
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precipitation after adjustment for temperature. Both natural region and season were found

to be significant effect modifiers of the ENSO-dengue effect, with the effect of ENSO being

stronger in the summer and the Selva Alta and Costa regions, compared with winter and

Selva Baja and Sierra regions.

Conclusions

Our results provide strong evidence that temperature and ENSO have significant effects

on dengue outbreaks in Peru, however these results interact with region and season, and

are stronger for local ENSO impacts than remote ENSO impacts. These findings support

optimization of a dengue early warning system based on local weather and climate moni-

toring, including where and when to deploy such a system and parameterization of ENSO

events, and provide high-precision effect estimates for future climate and dengue model-

ing efforts.

Author summary

The theoretical importance of the El Niño Southern Oscillation to infectious disease trans-

mission is widely accepted, however few studies have quantified this effect or its interac-

tion with local environment. Using surveillance data on outbreaks of dengue fever in

Peru, we have found evidence that El Niño events increase the risk of dengue outbreaks in

the high jungle and coast, and decrease this risk in the low jungle. Our findings are likely

generalizable to other viruses which are, like dengue virus, are transmitted by Aedes
aegypti mosquitoes, including Zika, chikungunya, and yellow fever. As climate change is

expected to increase the frequency of El Niño events, these results indicate that arbovirus

outbreaks may also increase, and that El Niño events may be leveraged to predict them.

Introduction

Dengue fever is one of the most important arboviral diseases worldwide, with significant

socioeconomic and health impacts in the tropics and subtropics. In 2019, the World Health

Organization (WHO) included dengue as one of the top ten threats to global health due to its

increasing incidence worldwide and its spread into temperate climates [1]. While the global

burden of dengue is unknown, cases are increasing rapidly with an 8-fold increase in reported

cases over the last two decades [2]. In the Americas, the highest incidence of dengue cases

occurred in 2019, with over 3 million infections reported [3].

The relationship between weather and the seasonal and inter-annual variation in dengue

cases has long been a focus of dengue research. Dengue is endemic in some regions of Peru

and the Peruvian Ministry of Health considers dengue to be an important re-emerging disease

[4, 5]: in 2019, there were 17,143 reported cases of dengue with a cumulative national inci-

dence rate of 53 cases per 100,000 people [6]. Currently, more than half of the population of

Peru is at risk of dengue infection, with 17 of the 25 departments believed to be inhabited by

Ae. aegypti mosquitoes [7, 8]. Environmental conditions, including weather, have a well-docu-

mented role in the survival, behavior, and proliferation of the mosquito vector (Aedes aegypti
and Aedes albopictus), with warmer temperatures documented to increase mosquito feeding

behavior, reduce gonotrophic cycle length, and hasten larval development [9]. Temperature
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also has a direct effect on viral replication in the mosquito midgut, with higher temperatures

associated with a shorter extrinsic incubation period [10]. Aedes mosquitoes are container

breeders, readily ovipositing in manmade containers such as water storage containers and dis-

carded trash. Increases in rainfall can create new water-filled breeding sites in both natural

and artificial containers, while drought may also increase breeding sites as households store

water [11, 12].

The El Niño Southern Oscillation (ENSO) is considered to be one of the Earth’s most signif-

icant weather-producing phenomena, in which fluctuating ocean temperatures, trade wind

strength, and atmospheric pressure lead to far-reaching climate condition changes [13–15]. El

Niño and La Niña events generally occur every two to seven years in an irregular cycle with

intervening neutral periods [16, 17]. El Niño warming events and La Niña cooling events can

lead to widespread impacts on local weather, altering regional rainfall, temperature, and sun-

light availability through atmospheric teleconnections [17].

Theoretically, the temperature and precipitation changes that appear with ENSO could

affect dengue transmission by changing mosquito population and viral replication dynamics.

The relationship between ENSO and dengue has become more relevant with an increasing

ability to reliably forecast El Niño and La Niña events. In the future, such forecasts could form

the basis of an early warning system for arboviral diseases, including dengue, and facilitate out-

break preparedness and targeting of interventions [18, 19].

Peru is particularly sensitive to ENSO due to its long coastline on the Pacific Ocean, the

Andes mountains, and its low tropical rainforest regions [20]. This diversity of environmen-

tal conditions provides a unique opportunity to study interactions with local environment

and the ENSO-dengue relationship. With the Andes mountain range running north to south

across Peru, the country can be divided into three natural or “eco” regions: the Costa (coast),

a narrow strip of land between the Pacific Ocean and the western Andes; the Sierra (moun-

tains), encompassing the Andes mountain range; and the Selva (jungle), which covers the

majority of Peru and is further divided into the high jungle (Selva Alta) located in the eastern

foothills of the Andes, and the low jungle (Selva Baja), part of the Amazon River basin. The

local impacts of El Niño and La Niña vary between regions and events, but studies have

found that strong El Niño events can bring heavy rainfall to the Costa north of Lima and

areas north of the Pacific hydrographic drainage, while also causing decreased rainfall in the

Lake Titicaca hydrographic drainage and southern Andean region [20, 21]. In addition to

changes in rainfall, El Niño events can cause increased temperatures and heat waves, particu-

larly along the coast [21]. While previous studies have detected associations between local

weather variables and dengue epidemics in Peru [22, 23], prior efforts to estimate the associ-

ation with El Niño events have been largely descriptive [24] and limited in geographic scope

[24, 25].

Despite the wealth of literature on the meteorological drivers of dengue outbreaks and the

theoretical importance of ENSO events, literature on the relationship between ENSO and

outbreaks of arboviruses, and modification of this effect by season or local environment, is

limited. We utilized a hierarchical Bayesian approach and 18 years of dengue surveillance to

characterize the association between ENSO effects and dengue risk in Peru at the district

level. This work fills a knowledge gap important to mitigating the effects of dengue in

Peru by describing the utility of local weather data and El Niño events in forecasting dengue

epidemics.

Methods

R version 3.5.3 [26] was used for all analyses.
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Setting

The study area includes all districts in Peru with a mean elevation of less than 2,500 meters,

over the period January 2000 to September 2018. There are 1,851 total districts in Peru; as

some districts were formed during the study period, and novel districts would not be contrib-

uting to reporting prior to their inception, we considered these newly-formed districts as part

of their parent districts to mitigate missingness in the outcome variable. This resulted in a total

of 1,834 districts. After eliminating districts with a mean elevation of more than 2,500 meters,

an altitude at which the Ae. aegypti vector is unlikely to be present [27], 701 districts remained

for analysis (Fig 1). We did not exclude district-months with low mean temperatures (i.e., tem-

peratures significantly below the survival threshold of Ae. aegypti) as altitude thresholding

Fig 1. Study districts across Peru (grey). Higher elevation districts (white) excluded from analyses. Merged districts

(red) were created by collapsing districts formed during the study period with their parent district(s). Base map source:

GEOSS Information Exchange Data Hub, archived.

https://doi.org/10.1371/journal.pntd.0010479.g001
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eliminated nearly all such district-months; in the final analysis dataset, less than 1% of observa-

tions fell below 10˚C.

Study design

This study was a time series study, analyzed at the level of the district-month. This level of

aggregation was dictated by data availability, with disease surveillance data available at the dis-

trict-level and finest ENSO and environmental data available at the monthly-level.

Exposure. Temperature was parameterized as mean value in Celsius, and precipitation as

total kg/m2 over an average month (30.33 days). These data were acquired from the NASA

GLDAS, a global repository of moderate-resolution (0.25˚) data derived from ground and sat-

ellite observations and land surface models [28, 29]. These data were downloaded from the

NASA EARTHDATA website [30] and averaged over district in QGIS version 3.6 using the

zonal statistics tool [31]. For districts smaller than the pixel size in the GLDAS data (n = 25), a

0.125˚ buffer was used. For aggregated districts and months following the creation of the novel

district(s), mean temperature and precipitation for a given month were taken over the parent

and novel districts.

ENSO events were parameterized as binary variables, with two indices used to reflect both

remote and local ENSO effects in separate models. Remote impacts can cause weather change

via atmospheric teleconnections, while local impacts can cause coastal rain and marine ecosys-

tem disturbances. For the remote impacts we used monthly Oceanic Niño Index (ONI) data

for the Niño 3.4 region, downloaded from the National Oceanic and Atmospheric Administra-

tion (NOAA) website [32]. For the local impacts we used monthly El Niño Coastal Index

(ICEN) data, developed by Peru’s Estudio Nacional del Fenómeno El Niño, which we down-

loaded from the Instituto del Mar del Peru website [33]. Months with a sea surface temperature

anomaly of greater than 0.5˚C were classified as El Niño for the Niño 3.4 index, and months

with sea surface temperature anomaly of greater than 0.4˚C were classified as El Niño for the

Niño ICEN index, in keeping with the respective agency’s definition of (at minimum) weak El

Niño.

Outcome. Dengue cases were collected from Peru’s national dengue surveillance system,

which is coordinated by the Centro Nacional de Epidemiologı́a, Peruvian Ministry of Health.

These data classify cases by diagnosis (with and without alarm signs and serious dengue), and

type (probable, confirmed, and discarded), and include district of residence, age, sex, date of

initial symptoms, date of diagnosis, and date of notification. We collapsed probable and con-

firmed cases for all analyses, where probable cases were defined by history of recent fever in

addition to two or more symptoms (headache, retro-orbital pain, myalgia, joint pain, rash, or

hemmorhagic condition), and confirmed cases were defined by meeting the probable case def-

inition in addition to either (1) serum isolation, or (2) four-fold change in IgM or IgG titer, or

(3) positive PCR, or (4) positive immunoassay, or (5) epidemiological link (residing in an area

with laboratory-confirmed transmission and presence of Ae. aegypti in the past 15 days). Dis-

carded cases were ruled out via laboratory tests or absence of an epidemiological link [34].

While case definitions changed during the study period, all data used were updated to the cur-

rent WHO definition. No analyses were dengue serotype-specific. Date was defined by date of

symptom onset, and any district-week with no reported cases was assigned 0 cases.

Due to concerns surrounding surveillance fatigue (whereby districts experiencing a very

high number of cases become overwhelmed and cease reporting) [35] leading to outcome

misclassification, we parameterized outcome as dengue outbreaks. Date of initial symptoms

was used to assign cases to calendar week. In keeping with prior literature, an outbreak was

defined as five or more cases within three or more consecutive weeks, extending forward and
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backward in time until at least two weeks with no reported cases occurred [22]. District weeks

were assigned as outbreak weeks if they occurred during an outbreak in that district, regardless

of conditions in neighboring districts (i.e., if a given district experienced 3 cases in a two week

period, and a neighboring district experienced 4 cases in the same three week period, none of

the district weeks in question would be assigned as outbreak weeks). This approach ensures

imported cases do not contribute to a district’s outcome measurement, but may miss small

outbreaks spread across border communities.

To aggregate from district-weeks to district-months, we summed the number of outbreak-

weeks in a given month.

Confounders. In order to be a confounder, a variable must have a causal relationship with

the outcome, and either have a causal relationship with the exposure or share a common cause

[36]. While there are many important causes of dengue outbreaks—human mobility, vector

control efforts, wind speed, etc.—these variables are not causes of ENSO events, nor are they

likely to share common causes, thus we did not identify any confounders for the ENSO mod-

els. As temperature and precipitation may share a common cause, temperature may be a con-

founder of the precipitation effect, and precipitation may be a confounder of the temperature

effect. We handled this by fitting a single model for temperature and precipitation and inter-

preting the coefficient for temperature as adjusted for precipitation, and the coefficient for pre-

cipitation as adjusted for temperature.

Effect modifiers. We investigated season and eco-region as effect modifiers for the ENSO

effect, defining effect modification by the presence of a statistically significant interaction term

on the multiplicative scale.

Eco-region was hypothesized to be an effect modifier as topographical, ecological, and cli-

mactic features unique to each region may modify both the impact of ENSO events and mos-

quito population and dengue transmission dynamics. Eco-region was parameterized as Selva

Alta, Selva Baja, Costa, and Sierra [37].

Eco-region data were downloaded from a Universidad de San Martı́n de Porres database

[38]. We parameterized season as binary summer/winter, and defined summer as December

to April and winter as May to November.

Statistical analyses. We fit all models as Poisson Bayesian hierarchical spatial smoothing

models, with district-month as the unit of analysis and outcome parameterized as outbreak

weeks in each district-month (the number of weeks, in that district and month, in which an

outbreak occurred), using the INLA package version 19.09.03 [39]. We fit the BYM model, a

standard model for estimation of ecological associations [40]. This model “absorbs” extra-

Poisson variation into the structured and unstructured spatial random effects [41]:

Yi � PoissonðliÞ ð1Þ

li ¼ exp b0 þ β1Xþ
XK

k¼1

bktbk þ ei

 !

ð2Þ

ei ¼ Si þ �i ð3Þ

�ijs
2
�
� iidNð0; s2

�
Þ ð4Þ

SijSj; j 2 neðiÞ � N S j;
s2
s

mi

� �

ð5Þ

Where
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• i indexes district (i=1,2,. . .,701) and t indexes time (t=1,2,. . .,225)

• Yi is outbreak weeks in district i

• X is a vector of fixed effects

• Time trends are modeled with a cubic B-spline basis bkt and K is such that we have 4 knots

evenly spaced per year

• �i are the unstructured (non-spatial) random effects

• S is the vector of structured (spatial) random effects, assumed to follow the ICAR model

• ne(i) denotes neighbors (shared boundaries) of district i

• mi is the number of neighbors of district i

For both random effects we used a “penalized complexity” prior [42, 43] Pr(σ> U) = α,

where σ is the standard deviation for the structured and unstructured random effects, U = 1,

and α = 0.01, giving the prior Pr(σ> 1) = 0.01. With a log link, this specification gives a 99%

posterior credible interval of (0.31, 2.72), on the multiplicative scale, for each random effect’s

residual relative risk. This specification was to be wide enough such that the prior would not

have undue influence on the posterior.

Fixed effects were governed by the model in question, at minimum containing the exposure

of interest (temperature, precipitation, El Niño ONI, El Niño ICEN), and at most extending to

interaction terms between the exposure of interest and an effect modifier (season, eco-region).

Inference. We have used B-splines to address temporal autocorrelation rather than

including temporal random effects to both mitigate the computational challenges of fitting

models with 701 spatial random effects and 225 temporal random effects, and to retain

interpretability of our effect estimates. If temporal random effects were included, effect esti-

mates derived from regression coefficients would pertain to district-weeks with a temporal

random effect of 0.

Model checking. In keeping with best practices for hypothesis testing and statistical infer-

ence, all hypotheses—and therefore fixed effects and their functional forms—were pre-speci-

fied and not subject to model testing or fitting. Thus, no variable selection occurred. However,

partial autocorrelation functions and Moran’s I were applied to model residuals to check for

residual temporal and spatial autocorrelation, respectively, to ensure our choices of splines in

time, structured and unstructured random effects in space, and penalized complexity priors

were adequate to address autocorrelation. Also consistent with these principles, results are

only presented for exposures of interest as detailed above.

We implemented Moran’s I using the moran.test() function in the spdep package [44],

defining neighbors by shared boundaries and autocorrelation as p� 0.05. We computed par-

tial autocorrelation functions using the pacf() function in the stats package [26], and inspected

a sample of plots from randomly-selected districts to evaluate evidence of residual temporal

autocorrelation.

Results

Descriptive statistics

An average of 0.16 outbreak weeks were observed across district-months, and 20–27% of

months were El Niño months, depending on index used (Table 1). Districts with higher values

for outbreak weeks appear to cluster together (Fig 2), temperature appears lowest in the Selva

Baja and Selva Alta regions (Figs 3 and 4), and precipitation generally increases along a west to
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east gradient (Fig 5). The largest national outbreak during the study period occurred in 2017,

with smaller outbreaks noted in 2011, 2013, and 2015, in order of decreasing size (peak cases)

(Figs 6 and 7).

Regression models

Both natural region and season were statistically significant effect modifiers of the El Niño

effect, thus only stratified results (on region or season) are presented (Table 2). All stratified

effects were statistically significant; the effect of the ONI index was positive in the summer and

negative in the winter, versus positive for both using the ICEN index, but stronger for summer

(Table 2). Natural region results were also in general stronger and more positive for the ICEN

index than the ONI index, with the exception of Selva Baja (ONI effect slightly stronger than

ICEN). The effect for Sierra was on the opposite side of the null, being negative for the ONI

index and strongly positive for the ICEN index (Table 2). Effect estimates were also statistically

significant for temperature, with a one degree Celsius increase in temperature associated with

a 14% higher rate of dengue outbreaks (95% CI 1.13, 1.15). There was no evidence of effect for

precipitation (Table 2).

Model checking. Partial autocorrelation functions for a random sample of 10 districts are

presented in S1 Fig. There were no obvious temporal trends in the residuals, suggesting no

residual autocorrelation in time. Similarly, Moran’s I tests produced p-values between 0.46

and 0.86 across these models, suggesting no residual autocorrelation in space. Taken together,

these results support the validity of our models.

Discussion

This study detected a significant positive effect of El Niño on dengue outbreaks in Peru, with

the index of local impacts showing a stronger association than the index of remote impacts.

We also found a significant positive effect of increasing temperature on dengue outbreaks in

Peru.

Our results furthermore demonstrated marked effect modification by season and natural

region for the ENSO-dengue relationship. In particular, ENSO events were associated with a

Table 1. Descriptive statistics after merging formed districts and eliminating districts with elevation>2,500

meters (n = 701) January 2000-September 2018. Mean was taken over district-months for outbreak weeks, tempera-

ture, and precipitation; over districts for region; and over months for El Niño variables.

Variable Mean (sd)

Outbreak weeks 0.16 (0.78)

Temperature (˚C) 20.04 (4.01)

Precipitation (kg/m2) 81.15 (90.12)

Natural region�

Costa 341 (49%)

Selva Alta 129 (18%)

Selva Baja 137 (20%)

Sierra 93 (13%)

El Niño ONI� 46 (20%)

El_Niño ICEN� 60 (27%)

sd: standard deviation; ONI: Oceanic Niño index for Niño 3.4 region (remote impacts); ICEN: El Niño Coastal Index

(local impacts).

�n(%)

https://doi.org/10.1371/journal.pntd.0010479.t001

PLOS NEGLECTED TROPICAL DISEASES Dengue risk in Peru: effect of climate and weather

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010479 June 30, 2022 8 / 18

https://doi.org/10.1371/journal.pntd.0010479.t001
https://doi.org/10.1371/journal.pntd.0010479


lower risk of dengue outbreaks in Selva Baja, but a higher risk of outbreaks in Selva Alta and

Costa, and this result was consistent across both ENSO indices (remote and local). For Sierra

and for winter, however, results were disparate across these indices: remote ENSO effects were

associated with a lower risk of dengue outbreaks, while local ENSO effects were associated

with a higher risk. This result may reflect model overfitting due to the low number of out-

breaks occurring in the winter and Sierra, with over 95% of district-months having no out-

breaks in this season and region. However, there are several explanations for a true differential

effect of ENSO on dengue outbreaks by natural region.

A 2011 study by Chowell et al. found that the timing of dengue epidemics differed signifi-

cantly between natural regions (jungle, mountain, coastal) in Peru—with the jungle and

mountain regions having an epidemic peak of dengue about six weeks prior to the peak in the

coastal region [22]—and weather effects of ENSO events may also differ by natural region.

Generally absent along the coast in non-ENSO years, rainfall increases up to 20-fold in some

northern coastal regions during ENSO events [45], with similarly marked increases in rainfall

in the northwestern Sierra region furthermore bringing even more water into rivers and

Fig 2. Outbreak weeks, summed over time, merged districts in Peru (n = 1,834), January 2000-September 2018.

Base map source: GEOSS Information Exchange Data Hub, archived.

https://doi.org/10.1371/journal.pntd.0010479.g002
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streams located at lower altitudes [46]. Dengue transmission potential is known to be influ-

enced by temperature-humidity coupling [23], and increases in river discharge and flooding

subsequent to this heavy rainfall in the Sierra region create a favorable environment for vector

breeding in both the Sierra and Costa regions. With regards to the jungle region, on the eastern

slope of the Andes there is a temperature gradient from Selva Baja to Selva Alta [47]. During

ENSO events, rising temperatures move the lower threshold for mosquito development to a

higher altitude, allowing mosquitoes to breed in a larger area of the Selva Alta region [9]. Con-

versely, in Selva Baja, ENSO events lead to warmer temperatures and drier conditions which

are less favorable for vector breeding [46, 48, 49].

Our study has several strengths. We used nearly twenty years of surveillance data corre-

sponding to a sample size of nearly 160,000 district-months, and parameterized outcome as

dengue outbreaks to mitigate the effects of reporting fatigue and measurement error arising

from undetected asymptomatic cases. We also used a robust spatial model to handle spatial

autocorrelation, using principled priors and a spatial random effect well-suited to a study

region comprised largely of areas (districts) with many neighbors. We adopted a causal infer-

ence approach to identifying confounders, mitigating the risk of overadjustment bias. While

Fig 3. Temperature (mean over time; ˚C), merged districts in Peru (n = 1,834), January 2000-September 2018.

Base map source: GEOSS Information Exchange Data Hub, archived.

https://doi.org/10.1371/journal.pntd.0010479.g003
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prior authors have detected associations between local weather variables and dengue epidem-

ics in Peru [22, 23], studies on the relationship with El Niño events have been limited to

descriptive statistics in a single department each (Ica, a southern coastal department, and Hua-

nuco, a central eastern department) [24, 25]. Our study extends these previous efforts by esti-

mating the magnitude of the ENSO effect on dengue outbreaks across all districts in Peru,

facilitating estimation of effect modification by natural region and improving the statistical

precision of our effect estimates.

However, our study also has several limitations. Namely, use of surveillance data is subject

to bias arising from health-seeking behavior, successful identification of dengue cases by

healthcare providers, and intact surveillance infrastructure. We assumed any district-months

not appearing in the surveillance data had 0 cases, however it is possible such units experienced

unrecognized or unreported dengue cases or even outbreaks. If such underreporting is ran-

dom in space and time we expect our effect estimates to be attenuated (closer to 1), however if

there is a spatial or temporal pattern to this underreporting, unpredictable bias can result. For

instance, during the 2017 El Niño costero event, 64 healthcare centers were destroyed and

Fig 4. Natural region, merged districts in Peru (n = 1,834), January 2000-September 2018. Base map source:

GEOSS Information Exchange Data Hub.

https://doi.org/10.1371/journal.pntd.0010479.g004
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1,044 were damaged; this event may have precipitated both dengue transmission and underre-

porting [50]. Furthermore, our choice of month as the temporal scale of analysis, dictated by

granularity of the climate data, may not be the appropriate timescale to capture the effect of

local weather and ENSO events on dengue outbreak risk.

We did not adjust for dengue prevention activities during the study period as we did not

have access to these data; Peru has not implemented dengue vaccination at this time. Preven-

tion measures other than vaccination may represent effect modifiers if ENSO or weather

effects are different in their presence versus absence, in which case effect estimates should be

stratified on intervention status.

Our study is furthermore an ecological study, conducted at the level of the district-month.

While the exposures of interest are group-level without inherent individual-level analogs,

cross-level bias may nevertheless arise from individual-level effect modifiers whose distribu-

tion or effect differs across districts or time [51]. For instance, if individual-level variables such

as access to air conditioning modifies the effect of ENSO events on dengue risk, and the distri-

bution of these variables is different in different district-months, bias will result. However, an

Fig 5. Precipitation (mean over time; kg/m2), merged districts in Peru (n = 1,834), January 2000-September 2018.

Base map source: GEOSS Information Exchange Data Hub, archived.

https://doi.org/10.1371/journal.pntd.0010479.g005
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individual- or multi-level study on the scale of this analysis would not be feasible, and wealth

data would not rectify the limitations of an ecological design.

Though rainfall affects mosquito populations via breeding site creation, our study did not

find a positive association between precipitation and dengue outbreaks. This result could be

due to a highly local effect of precipitation that is no longer appreciable at the district-level, or

failure of our models to capture the complex and non-linear relationship between precipitation

and mosquito ecology. While reduced precipitation limits reproductive habitat in theory, dur-

ing times of drought people may store water and inadvertently create suitable habitat for mos-

quitoes near their homes [12]. Furthermore, intense precipitation can wash out mosquito

Fig 6. Dengue cases, summed over districts (n = 701), January 2000-September 2018.

https://doi.org/10.1371/journal.pntd.0010479.g006

Fig 7. Number of outbreak weeks, summed over districts (n = 701), January 2000-September 2018.

https://doi.org/10.1371/journal.pntd.0010479.g007
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habitats, reducing the population. Future studies to examine the effect of rainfall on dengue

outbreaks in Peru may warrant a more localized or flexible approach, including lags.

Finally, our modeling choice has attendant limitations. Effect estimates from ICAR models

must be interpreted conditionally, that is for an “average” district month with a spatial random

effect of 0. We chose splines to handle temporal autocorrelation and to adjust for longer-term

temporal effects than those relevant to our research question. We made this decision due to

the computational challenge of modeling nearly 160,000 temporal random effects (225 months

x 701 study districts), and to facilitate interpretation of resulting effect estimates; use of ran-

dom walk or autoregressive random effect on time would render our estimates conditional on

both spatial and temporal random effects, but the simple interpretation of “an average month

with a temporal random effect of 0” does not readily follow. Inspection of residual partial auto-

correlation functions in a random sample of districts, included in S1 Fig, indicates no residual

temporal autocorrelation. Lastly, while we are confident that the wide priors we have specified

for our Bayesian hierarchical models combined with the richness of our dataset protect against

undue influence of these priors on our findings, we did not conduct sensitivity analyses in this

regard.

Conclusions

Despite its limitations, our study utilizes a principled approach and a rich dataset to examine

the effect of local weather and climactic factors on the risk of dengue outbreaks in Peru.

Namely, we have demonstrated the potential use and importance of temperature and ENSO

on dengue outbreak risk, suggesting these variables could be important predictors in outbreak

prediction models, particularly in the summer and in the Selva Alta and Costa regions. Fur-

thermore, the relationships characterized here may hold for other Aedes-vectored diseases. In

light of the expected increase in frequency and severity of El Niño events in coming decades

due to climate change [52, 53], and limited utility of currently-licensed vaccines [54, 55],

strengthening capacity to predict and mitigate arbovirus outbreaks is all the more urgent.

Table 2. Results from regression models, presented for each exposure of interest. Temperature and precipitation

were fit in the same model, thus each was adjusted for the other; no adjustments were made in either El Niǹo model.

RR (mean) (95% CI)

Temperature 1.14 1.13, 1.15

Precipitation 1.00 1.00, 1.00

El Niño ONI Summer 1.13 1.09, 1.17

Winter 0.93 0.90, 0.96

Selva Baja 0.90 0.86, 0.94

Selva Alta 1.21 1.14, 1.29

Costa 1.10 1.06, 1.13

Sierra 0.83 0.74, 0.93

El Niño ICEN Summer 1.76 1.71, 1.84

Winter 1.45 1.40, 1.51

Selva Baja (low jungle) 0.94 0.91, 0.98

Selva Alta (high jungle) 1.58 1.48, 1.71

Costa (coast) 1.93 1.86, 2.00

Sierra (mountains) 2.44 1.06, 6.06

RR: rate ratio; CI: posterior credible interval; ONI: Oceanic Niño index for Niño 3.4 region; ICEN: El Niño Coastal

Index.

https://doi.org/10.1371/journal.pntd.0010479.t002
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Supporting information

S1 Fig. Partial autocorrelation functions for temperature and precipitation model and for

all El Niño models for a random sample of 10 districts. Autocorrelation is indicated by taller

bars at shorter lags (i.e., decreasing bar heights from left to right)].

(PDF)
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